Search results for "Schmidt number"

showing 3 items of 3 documents

CFD prediction of shell-side flow and mass transfer in regular fiber arrays

2021

Numerical simulations were conducted for fully developed, steady-state flow with mass transfer in fiber bundles arranged in regular lattices. The porosity was 0.5 and the Schmidt number 500. Several combinations of axial flow, transverse flow and flow attack angles in the cross-section plane were considered. The axial and transverse Reynolds numbers Rez , ReT were made to vary from 10(^−4) to 10(^2). Concentration boundary conditions, and the definition of an average Sherwood number, were addressed. Results for the hydraulic permeability were compared with the literature. Both hexagonal and square lattices were found to be hydraulically almost isotropic up to transverse flow Reynolds number…

Fluid Flow and Transfer ProcessesPhysicsSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMechanical EngineeringComputational fluid dynamics Viscous flow Shell-side mass transfer Rod array Cylinder arraySchmidt numberIsotropyReynolds number02 engineering and technologyMechanics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSherwood number010305 fluids & plasmasPhysics::Fluid DynamicsTransverse planesymbols.namesakeAxial compressorFlow (mathematics)Mass transfer0103 physical sciencessymbols0210 nano-technologySettore ING-IND/19 - Impianti Nucleari
researchProduct

Mass transfer in ducts with transpiring walls

2019

Abstract The problem of mass transfer in ducts with transpiring walls is analysed: the concepts of “solvent” and “solute” fluxes are introduced, all possible sign combinations for these fluxes are considered, and relevant examples from membrane processes such as electrodialysis, reverse osmosis and filtration are identified. Besides the dimensionless numbers commonly defined in studying flow and mass transfer problems, new dimensionless quantities appropriate to transpiration problems are introduced, and their limiting values, associated with “drying”, “desalting” and “saturation” conditions, are identified. A simple model predicting the Sherwood number Sh under all possible flux sign combi…

Fluid Flow and Transfer ProcessesSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryMechanical EngineeringSchmidt numberFlow (psychology)02 engineering and technologyMechanicsComputational fluid dynamics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSherwood number010305 fluids & plasmasMass transfer Transpiring wall Sherwood number Computational fluid dynamics Parallel flowMass transfer0103 physical sciencesDiffusion (business)0210 nano-technologybusinessSaturation (chemistry)Settore ING-IND/19 - Impianti NucleariDimensionless quantityMathematicsInternational Journal of Heat and Mass Transfer
researchProduct

CFD prediction of flow, heat and mass transfer in woven spacer-filled channels for membrane processes

2021

Abstract Flow and heat or mass transfer in channels provided with woven spacers made up of mutually orthogonal filaments were studied by Computational Fluid Dynamics. The problem addressed was the combined effect of the parameters that characterize the process: pitch to height ratio P/H (2, 3 and 4), flow attack angle θ (0, 7, 15, 20, 30, 40 and 45°) and Reynolds number Re (from ~1 to ~4000). The Prandtl number was 4.33, representative of water at ~40°C, while the Schmidt number was 600, representative of NaCl solutions. Simulations were performed by the finite volume code Ansys CFX™ 18.1 using very fine grids of ~6 to ~14 million volumes. For Re > ~400, the SST turbulence model was used to…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials science020209 energyPrandtl number02 engineering and technologyComputational fluid dynamicsSherwood numbersymbols.namesakeTemperature polarizationMass transfer0202 electrical engineering electronic engineering information engineeringPressure dropConcentration polarizationWoven spacerSettore ING-IND/19 - Impianti NucleariFluid Flow and Transfer ProcessesTurbulenceMechanical EngineeringSchmidt numberReynolds numberMechanics021001 nanoscience & nanotechnologyCondensed Matter PhysicsNusselt numberSST turbulence modelHeat transfersymbols0210 nano-technology
researchProduct